Journal

Authors: Stamatatos E., Fakotakis N., Kokkinakis G.
Title: Automatic Text Categorization in Terms of Genre and Author
Journal: Computational Linguistics
Volume: 26
Number: 4
Pages: 461-485
Year: 2000
Publisher: MIT Press
To appear: No
Link: http://dx.doi.org/10.1162/089120100750105920
ISI: No
Impact Factor:
File name:
Abstract: The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-levelmeasures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identiŽcation, and author veriŽcation tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling.Various performance issues regarding the training set size and the signiŽcance of the proposed style markers are discussed.Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of deŽning analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.